Today's Date: June 30, 2022
Mia Becar to Launch Equity Crowdfunding Campaign   •   Four recipients of the 2022 Awards of Excellence in Nursing announced from Indigenous Services Canada   •   Five Bluum Standouts Honored on CRN 2022 Women of the Channel List   •   VNA Health Care Discusses the Importance of Mammography and Cervical Cancer Screenings   •   NCCI Golf Event Generates $25,000 for Kids' Chance of America Scholarships   •   Closing the Health Disparity Gap for Black Women   •   Silver Spring Foods Releases First-Ever Non-GMO Horseradish Just in Time for National Horseradish Month   •   Global Surrogacy Services Announces Outreach to Potential Gestational Surrogates in Three Southwestern States   •   Eight Ameriprise Financial Advisors Named to the Barron’s Top 100 Women Financial Advisors List   •   Citizens for Judicial Fairness and Reverend Al Sharpton Applaud Nomination of Justice Tamika Montgomery-Reeves to Third Circuit   •   Checkmarx' Ana Lucia Amaral Honored as a CRN 2022 Woman of the Channel   •   Mrs. Flowers Takes the Helm at Comfort Home Care, Rockville, MD   •   Xfinity Stream app Launches on Apple TV 4K and Apple TV HD   •   Equitable Bank Releases Inaugural ESG Performance Report   •   RNR Tire Express Surprises Tampa-Area Woman with New Car in Mother's Day Giveaway   •   Prime Capital Investment Advisors Partners With Female-led Crossvault Capital Management   •   Tracey Hayes from MicroAge Named on CRN's 2022 Women of the Channel Power 70 Solution Providers List   •   Cinemark Brings the Ultimate Cinematic Experience to Riverton with Mountain View Village Theatre Now Open   •   Tractor Supply Company Celebrates Service Members With Nationwide Discount on the Fourth of July and Announces Grant Donation fo   •   Southern Glazer’s Wine & Spirits Donates $25,000 to Ali Forney Center in Honor of Pride Month
Bookmark and Share

Novel Assay for Early Detection of Ovarian Cancer From Mercy BioAnalytics Significantly Outperforms CA125 in New Research Presen

NATICK, Mass. , May 27 /Businesswire/ - Mercy BioAnalytics, Inc., a pioneer in extracellular vesicle-based liquid biopsies for the early detection of cancer, today announced that the Mercy Halo Ovarian Cancer (OC) assay substantially outperformed CA125 when distinguishing patients with early-stage high-grade serious ovarian cancer (HGSOC) from women with benign conditions in a new study to be presented next week at the American Society of Clinical Oncology (ASCO) 2022 Annual Meeting. The assay uses a novel method of analyzing biomarkers based on individual extracellular vesicles (EVs).

“These preliminary data suggest this approach may detect all stages of ovarian cancer with high sensitivity at a very high specificity and works equally well in both plasma and serum. Mercy’s assay shows promise in improving on CA125 by distinguishing stage I/II cancer from benign ovarian tumors and could have clinical utility for both early detection and surgical referral recommendation for benign and malignant ovarian tumors,” said Christine D. Berg, M.D., retired Chief, Early Detection Research Group, National Institutes of Health.

The study, titled “Extracellular vesicle-based biomarker assay for the detection of early-stage ovarian cancer,” will be presented on Saturday, June 4, 2022, at ASCO by Daniel Gusenleitner, Ph.D., Head of Computational Biology for Mercy Bioanalytics (Abstract #5542).

The study found that the Mercy Halo OC assay:

  • Displayed separation of HGSOC from benign adnexal masses and healthy controls that was superior to CA125.
  • When run against a variety of off-target cancers and inflammatory conditions, in most instances, discriminated them from ovarian cancer.
  • When run in paired serum and plasma samples, had highly correlated signals with virtually no bias, indicating the assay can be validated further in established blood biorepositories, which offers the potential to accelerate clinical study and development.

HGSOC is the most aggressive of all ovarian cancers and accounts for up to 70 percent of all ovarian cancer cases. Nearly 50 percent of ovarian cancer is detected at stage III or stage IV with poor survival outcomes. Current surveillance methods, including CA125, a current standard of care for ovarian cancer diagnosis, and ultrasound, are not effective enough at detecting early-stage disease. Emerging methods for early cancer detection rely primarily on tumor DNA circulating in blood (ctDNA), which is scarce in early-stage cancers, costly to measure, and not reliably obtained from tumors that are not well vascularized.

The novel Mercy Halo technology enables simultaneous detection of multiple cancer-related biomarkers co-localized on the surface of individual tumor-derived extracellular vesicles, which are abundant in circulation and can be readily measured. The Mercy Halo OC assay is designed to detect stage I/II ovarian cancer and to distinguish cancer from benign conditions.

“Too many women today suffer, and ultimately lose their lives, as a result of the late detection of ovarian cancer. We are encouraged by the data of our most recent study comparing the Mercy Halo Ovarian Cancer assay to CA125 in detecting early-stage ovarian cancer and distinguishing it from benign disease,” said Paul Blavin, Chief Executive Officer of Mercy BioAnalytics. “Our unique approach, focused on co-localization to interrogate single extracellular vesicles, has important advantages over current early cancer detection methods, and our work thus far has fueled our passion for relieving suffering and saving lives through the early detection of cancer. We look forward to expanding our studies of the Mercy Halo Ovarian Cancer assay to include average risk, asymptomatic women who might benefit from an improved ovarian cancer screening paradigm.”

ABOUT MERCY BIOANALYTICS, INC.

Mercy BioAnalytics, Inc. is on a mission to relieve suffering and save lives through the early detection of cancer. Early-stage cancer is difficult to detect, but when found, is more often amenable to curative therapy. The patented Mercy Halo liquid biopsy platform utilizes biomarker co-localization to interrogate highly abundant blood-based extracellular vesicles that carry unique cancer signatures from their parent cells. The Mercy Halo platform is designed to detect stage I cancer, when it is most treatable, and enhance the quality of life for cancer patients and their families. Mercy’s initial focus is the early detection of ovarian and lung cancers. Ovarian cancer, the most lethal gynecological cancer, typically goes undetected until it is too late to cure. Lung cancer, the number-one cancer killer, takes more lives than breast, prostate and colorectal cancers combined. For additional information, please visit https://www.mercybio.com.


STORY TAGS: Illinois, Massachusetts, United States, North America, Research, Medical Devices, Women, Clinical Trials, Biotechnology, Health, Consumer, Science, Oncology, Conference, Product/Service,

Video

White House Live Stream
LIVE VIDEO EVERY SATURDAY
alsharpton Rev. Al Sharpton
9 to 11 am EST
jjackson Rev. Jesse Jackson
10 to noon CST


Video

LIVE BROADCASTS
Sounds Make the News ®
WAOK-Urban
Atlanta - WAOK-Urban
KPFA-Progressive
Berkley / San Francisco - KPFA-Progressive
WVON-Urban
Chicago - WVON-Urban
KJLH - Urban
Los Angeles - KJLH - Urban
WADO-Spanish
New York - WADO-Spanish
WBAI - Progressive
New York - WBAI - Progressive
WKDM-Mandarin Chinese
New York - WKDM-Mandarin Chinese
WOL-Urban
Washington - WOL-Urban

Listen to United Natiosns News